Minimizing Shortfall Risk Using Duality Approach - An Application to Partial Hedging in Incomplete Markets
نویسندگان
چکیده
Option pricing and hedging in a complete market are well-studied with nice results using martingale theories. However, they remain as open questions in incomplete markets. In particular, when the underlying processes involve jumps, there could be infinitely many martingale measures which give an interval of no-arbitrage prices instead of a unique one. Consequently, there is no martingale representation theorem to produce a perfect hedge. The question of picking a particular price and executing a hedging strategy according to some reasonable criteria becomes a non-trivial issue and remains as an open question. Follmer and Leukert (2000) proposed an interesting partial-hedging strategy for European type options to reduce the initial capital charged while bearing some residual risk. The optimality criterion for measuring a hedging strategy is to minimize the shortfall risk at expiration. Unlike variance minimization, there is no penalty in case the hedging portfolio overshoots the option payoff. The existence of the optimal trading strategies when the stock price follows a semimartingale process is proved in Follmer and Leukert (2000) using the Neyman-Pearson lemma. However, computations of these strategies in incomplete models have turned out to be extremely difficult. We are interested in doing some explicit computations in a jump diffusion setting which is widely studied as a typical incomplete market model. First we extend the duality results in Kramkov and Schachermayer (1999) to utility functions which are state dependent and not necessarily strictly concave in a semimartingale setting and apply them to the case of shortfall minimization.
منابع مشابه
Risk measure pricing and hedging in incomplete markets
This article attempts to extend the complete market option pricing theory to incomplete markets. Instead of eliminating the risk by a perfect hedging portfolio, partial hedging will be adopted and some residual risk at expiration will be tolerated. The risk measure (or risk indifference) prices charged for buying or selling an option are associated to the capital required for dynamic hedging so...
متن کاملHedging of Options in Jump-Diffusion Markets with Correlated Assets
We consider the hedging problem in a jump-diffusion market with correlated assets. For this purpose, we employ the locally risk-minimizing approach and obtain the hedging portfolio as a solution of a multidimensional system of linear equations. This system shows that in a continuous market, independence and correlation assumptions of assets lead to the same locally risk-minimizing portfolio. ...
متن کاملCoherent Hedging in Incomplete Markets
In incomplete financial markets not every given contingent claim can be replicated by a self-financing strategy. The risk of the resulting shortfall can be measured by coherent risk measures, introduced by Artzner et al. [1]. The dynamic optimization problem of finding a self-financing strategy that minimizes the coherent risk of the shortfall can be split into a static optimization problem and...
متن کاملA Framework for Dynamic Hedging under Convex Risk Measures
We consider the problem of minimizing the risk of a financial position (hedging) in an incomplete market. It is well-known that the industry standard for risk measure, the Valueat-Risk, does not take into account the natural idea that risk should be minimized through diversification. This observation led to the recent theory of coherent and convex risk measures. But, as a theory on bounded fina...
متن کاملPricing and Hedging of Contingent Claims in Incomplete Markets by Modeling Losses as Conditional Value at Risk in Λ-gain Loss Opportunities
PRICING AND HEDGING OF CONTINGENT CLAIMS IN INCOMPLETE MARKETS BY MODELING LOSSES AS CONDITIONAL VALUE AT RISK IN λ-GAIN LOSS OPPORTUNITIES Zeynep Aydın M.S. in Industrial Engineering Supervisor: Prof. Dr. Mustafa Ç. Pınar July, 2009 We combine the principles of risk aversion and no-arbitrage pricing and propose an alternative way for pricing and hedging contingent claims in incomplete markets....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004